If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3f^2+f=4
We move all terms to the left:
3f^2+f-(4)=0
a = 3; b = 1; c = -4;
Δ = b2-4ac
Δ = 12-4·3·(-4)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-7}{2*3}=\frac{-8}{6} =-1+1/3 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+7}{2*3}=\frac{6}{6} =1 $
| 6-(2x+3)=4(2.5-2.5x | | 2(3b-4)=22+10b | | 2(3m–2)–4=2+9m–1 | | =x2+2x–8 | | 5(2x-10)+12=30 | | -5(5x+3)-5x+1=44 | | 7+t=29 | | -11(k+3)=2(-9-7k) | | 5(2x-10)+12=60 | | 3+2(1-x)=2(0.5×-2) | | 8x−10=6x−6 | | (9x-3)=(7x+1) | | -j/5=5 | | 3x/10=9/9 | | -7+8f=202.6 | | −(6x+8)=4(17−x | | -5+j=118 | | 15-g=23 | | 4-6(x+2)=2(x+5)+2 | | 8(1/2+1/4x)=4-3x+6 | | 2x=(5x-2)-(x+3) | | 12a-15=6-30a | | j/6=2 | | 18=a/4+25 | | 12a-15=6-30 | | 19x-21=12x-13 | | 9=3(b+9)-6 | | x=36;3x100 | | 10+x=43-15 | | -29/8k=-261/8 | | 6(x-15)=18 | | 5x=(4x)+(2x-2) |